Wavefield-continuation Angle Domain Common Image Gathers for Migration Velocity Analysis

Biondo Biondi¹, Thomas Tisserant¹, and Bill Symes²

1) Stanford University 2) Rice University

Stanford Exploration Project Stanford University

SEG 2003 - Dallas

Surface-offset CIGs in simple structure

Surface-offset CIGs in complex structure

ADCIGs and velocity in simple structure

ADCIGs and velocity in complex structure

biondo@stanford.edu

5

Outline

- Review of ADCIGs fundamentals (2-D)
- Analyze ADCIGs velocity (2-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ)
- Introduce ADCIGs in 3-D
- Analyze ADCIGs velocity (3-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ and ϕ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ and ϕ)

Outline

- Review of ADCIGs fundamentals (2-D)
- Analyze ADCIGs velocity (2-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ)
- Introduce ADCIGs in 3-D
- Analyze ADCIGs velocity (3-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ and ϕ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ and ϕ)

Common Image Gathers (CIGs => ADCIGS)

S E 8

• Offset-domain CIGs (Rickett and Sava, 2001)

$$I(z, x, h_x) = \sum_{s} \sum_{t} S_s\left(t, z, x + \frac{h_x}{2}\right) R_s\left(t, z, x - \frac{h_x}{2}\right)$$

• Angle-domain CIGs (Sava et al., 2001)

$$I(z, x, h_x) \xrightarrow{Slant Stack} I(z, x, \tan \gamma)$$

where : I – Image S_s – Source wavefield R_s – Receivers wavefield

Common Image Gathers (CIGs => ADCIGS)

• Offset-domain CIGs (Rickett and Sava, 2001)

$$I(z, x, h_x) = \sum_{s} \sum_{t} S_s\left(t, z, x + \frac{h_x}{2}\right) R_s\left(t, z, x - \frac{h_x}{2}\right)$$

• Angle-domain CIGs (Sava et al., 2001)

$$I(z, x, k_{hx}) - k_{hx} = -k_z \tan \gamma \rightarrow I(z, x, \tan \gamma)$$

where : I – Image S_s – Source wavefield R_s – Receivers wavefield

Common Image Gathers (CIGs => ADCIGS)

• Offset-domain CIGs (Rickett and Sava, 2001)

$$I(z, x, h_x) = \sum_{s} \sum_{t} S_s\left(t, z, x + \frac{h_x}{2}\right) R_s\left(t, z, x - \frac{h_x}{2}\right)$$

• Angle-domain CIGs (Sava et al., 2001)

$$I(z, x, k_{hx}) - k_{hx} = -k_z \tan \gamma \rightarrow I(z, x, \tan \gamma)$$

• No dependency on V(z,x)
• Dip-decomposition only in offsets

Transformation from Offset to Angle-Domain

Outline

- Review of ADCIGs fundamentals (2-D)
- Analyze ADCIGs velocity (2-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ)
- Introduce ADCIGs in 3-D
- Analyze ADCIGs velocity (3-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ and ϕ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ and ϕ)

Schematic of recording a data event

Schematic of migrating data event - low velocity

Offset Common Image Gather

Offset Common Image Gather

S = Locally constant slowness

Kinematics of transformation to angle domain

S = Locally constant slowness

Image point movements in ADCIGs

S = Locally constant slowness

Image point movements in ADCIGs

$$\Delta n = h_o \tan^2 \gamma$$

S =Locally constant slowness

Image point movements \Leftrightarrow Vel. perturbations

$$\Delta n = h_o \tan^2 \gamma$$

$$\Delta n = -\frac{\Delta t}{2S\cos\gamma}$$

S =Locally constant slowness

Image point movements \Leftrightarrow Vel. perturbations

$$\Delta n = h_o \tan^2 \gamma$$

$$\Delta n = -\frac{\Delta t}{2S\cos\gamma}$$

$$\Delta t \Leftrightarrow V(z, x, y)$$
??

S =Locally constant slowness

Image point movements \Leftrightarrow Vel. perturbations

Test on synthetic data

• Dip-dependent Residual Moveout (RMO)

$$\Delta n_{\rm RMO} = z_0 \frac{1 - \rho}{1 - \rho (1 - \cos \alpha)} \frac{\sin^2 \gamma}{(\cos^2 \alpha - \sin^2 \gamma)}$$

Flat-reflector Residual Moveout (RMO)

$$\Delta n_{\rm RMO} = z_0 (1 - \rho) \tan^2 \gamma$$

where
$$\rho = -\frac{S_0}{S_m}$$

RMO functions in ADCIG (synthetic test)

biondo@stanford.edu

26

Outline

- Review of ADCIGs fundamentals (2-D)
- Analyze ADCIGs velocity (2-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ)
- Introduce ADCIGs in 3-D
- Analyze ADCIGs velocity (3-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ and ϕ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ and ϕ)

• Offset-domain CIGs (Rickett and Sava, 2001)

$$I(z, x, h_x) = \sum_{s} \sum_{t} S_s\left(t, z, x + \frac{h_x}{2}\right) R_s\left(t, z, x - \frac{h_x}{2}\right)$$

• Angle-domain CIGs (Sava et al., 2001)

$$I(z, x, h_x) \xrightarrow{Slant Stack} I(z, x, \tan \gamma)$$

where : γ – Reflection opening angle

Offset-domain CIGs

$$I(z, \vec{\mathbf{x}}, \vec{\mathbf{h}}) = \sum_{s} \sum_{t} S_{s}\left(t, z, \vec{\mathbf{x}} + \frac{\vec{\mathbf{h}}}{2}\right) R_{s}\left(t, z, \vec{\mathbf{x}} - \frac{\vec{\mathbf{h}}}{2}\right)$$

• Angle-domain CIGs (Biondi and Tisserant, 2003)

$$I(z, \vec{\mathbf{x}}, \vec{\mathbf{h}}) \xrightarrow{Slant Stack + Coplanarity Condition} \to I(z, \vec{\mathbf{x}}, \gamma, \phi)$$

where : γ – Reflection opening angle ϕ – Reflection azimuth

Offset-domain CIGs

$$I(z, \vec{\mathbf{x}}, \vec{\mathbf{h}}) = \sum_{s} \sum_{t} S_{s}\left(t, z, \vec{\mathbf{x}} + \frac{\vec{\mathbf{h}}}{2}\right) R_{s}\left(t, z, \vec{\mathbf{x}} - \frac{\vec{\mathbf{h}}}{2}\right)$$

• Angle-domain CIGs (Biondi and Tisserant, 2003)

3-D ADCIGs along vertical local plane

3-D ADCIGs along slanted local plane

3-D ADCIGs along slanted local plane

3-D ADCIGs along slanted local plane

3-D ADCIGs along slanted and rotated plane

35

Example of 3-D ADCIGs – SEG-EAGE salt data

Migrated crossline section

Migrated depth slice

Effect of crossline dips on 3-D ADCIGs

Outline

- Review of ADCIGs fundamentals (2-D)
- Analyze ADCIGs velocity (2-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ)
- Introduce ADCIGs in 3-D
- Analyze ADCIGs velocity (3-D)
 - Small errors (unperturbed raypaths \Leftrightarrow fixed γ and ϕ)
 - Large errors (perturbed raypaths \Leftrightarrow varying γ and ϕ)

General 3-D ADCIGs - Correct velocity

General 3-D ADCIGs - Wrong velocity

Synthetic dataset with 5 planes oriented at 45°

3-D ADCIG with correct velocity

Constant (γ, ϕ) **cube with correct velocity**

Tracking reflector movement - unperturbed rays

Tracking reflector movement - perturbed rays

Conclusions

- ADCIGs provide accurate velocity information even in presence of steep dips.
- The kinematic analysis of ADCIGs when reflections are not focused at zero offsets leads to the derivation of accurate Residual Moveout functions in both 2-D and 3-D.
- ADCIGs in 3-D are 5-D objects, function of both the aperture angle γ and the reflection azimuth ϕ .
- In 3-D, large errors in velocity cause not only perturbations in γ but also perturbations in ϕ .

Acknowledgments

*****Total for North Sea data set.

SEP sponsors for financial support.